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Abstract In this paper, we introduce a new notion of augmenting function known as
indicator augmenting function to establish a minmax type duality relation, existence of a
path of solution converging to optimal value and a zero duality gap relation for a nonconvex
primal problem and the corresponding Lagrangian dual problem. We also obtain necessary
and sufficient conditions for an exact penalty representation in the framework of indicator
augmented Lagrangian.
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1 Introduction

Augmented Lagrangian with a convex quadratic augmenting function was formally
introduced by Rockafellar [7,8] to eliminate the duality gap between the primal constrained
optimization problem and its Lagrangian dual problem. Later Rockafellar and Wets [9] con-
sidered a general augmented Lagrangian with convex augmenting function to establish that
there is no duality gap between a nonconvex primal problem and the corresponding aug-
mented dual problem. For this purpose a dualizing parameterization function f (x, u) not
necessarily convex in x but convex in u and certain coercivity conditions, were imposed (see
Theorem 11.59). A necessary and sufficient condition for the exact penalty representation in
the framework of the augmented Lagrangian was also obtained (see [9, Theorem 11.61]).

Later Huang and Yang [2] extended the results by considering a generalized augmented
Lagrangian by relaxing the convexity on the augmenting function to level boundedness
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assumption. Zero duality gap and exact penalization results were established under weaker
conditions than those in [9]. Huang and Yang [2] established the existence of a path of optimal
solutions generated by generalized augmented Lagrangian problems, which converged to the
optimal set of the primal problem, but a minmax type relation as in Theorem 11.59 of [9]
was missing in Theorem 2.1 of [2]. This result further implied the zero duality gap property
between the generalized augmented Lagrangian dual problem and the primal problem. The
existence and convergence of a path of optimal solutions generated by penalty type problems
toward the optimal set is important for numerical methods (refer Auslender [1] and Yang and
Huang [10]).

Rubinov et al. [4] studied the zero duality gap property for an augmented dual
problem constructed using a family of augmenting functions. Necessary and sufficient
conditions for no duality gap have been given using tools from abstract convexity (see
Rubinov [5], Rubinov and Yang [6]), under the assumption that the augmenting family
contains an augmenting function minorizing the primal function. Recently Nedic and
Ozdaglar [3] provided a unifying geometric framework for the analysis of general clas-
ses of duality schemes and penalty methods for nonconvex constrained optimization
problems.

In this paper zero duality gap relation are obtained for a nonconvex primal problem.
This is achieved by considering a new form of augmenting function σ(u, r), which is con-
vex in u but not linear in r . It is defined as indicator function of a closed unit ball of
radius r with center at 0. This function has zero as the minimum value for each fixed r
but argmin of this function is not a set containing just 0. There are many advantages of
considering this type of augmenting function, which we refer to as indicator augmenting
function. This function will serve as augmenting function for any problem and there is no
need of searching for a suitable augmenting function corresponding to a primal problem in
the absence of convexity of u of the dualizing parameterization function f (x, u). In Exam-
ple 3.5 it is shown that the duality relation of Rockafellar and Wets [9] and Huang and
Yang [2] do not hold even for a convex primal problem when f is not convex in u with
a convex augmenting function but holds with indicator augmenting function. Also since
σ(u, r) is convex in u both minmax type relation and existence of optimal path converg-
ing to optimal solution can be established. Various equivalent criteria for the exact penalty
criterion can be established without any extra condition as in Theorem 3.1 of Huang and
Yang [2].

The indicator augmenting function differs from the augmenting function considered in
[2,9] since argmin σ(., r) is the whole of the region where it takes value 0 and not just a sin-
gleton set. The corresponding Lagrangian function is in fact quasiconcave and nonincreasing
in r unlike the augmented Lagrangian of [2,9] which is concave and nondecreasing in r .
Hence the dual function converges to the optimal value as the parameter r approaches 0 and
not ∞.

The outline of this paper is as follows. In Sect. 2, we give a brief review of the exist-
ing concepts of augmenting function, augmented Lagrangian and augmented Lagrangian
dual problem. In Sect. 3, we introduce the notion of indicator augmenting function and the
corresponding notions of augmented Lagrangian, augmented Lagrangian dual function and
augmented Lagrangian dual problem. We also establish both minmax type duality relation
and the existence of a path of optimal solutions converging to the optimal set of the primal
problem, which in turn implies a zero duality gap property for the primal problem and its
indicator augmented Lagrangian dual problem. In Sect. 4, we obtain necessary and suffi-
cient conditions for an exact penalty representation in the framework of indicator augmented
Lagrangian.
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2 Preliminaries

In this section we give a brief review of the concepts of Lagrangian and augmented Lagrangian
theory for an unconstrained optimization problem.

Consider the following optimization problem:

(P) infx∈Rnφ(x)

where φ : Rn → R̄ = R ∪ {+∞,−∞} is an extended real valued function. Suppose that
f (x, u) : Rn × Rm → R̄ is a dualizing parameterization function of u, that is

f (x, 0) = φ(x), ∀x ∈ Rn .

The Fenchel–Moreau conjugate of f , denoted by f ∗, is defined as

f ∗(ν, y) = sup(x,u){〈(ν, y), (x, u)〉 − f (x, u)}.
The dual problem associated to (P) is

(D) supy∈Rmψ(y)

where ψ(y) = − f ∗(0, y).
In fact if f is proper, lower semicontinuous (lsc in short) and convex function (φ is in

turn convex and lsc) then under certain mild conditions there exist no duality gap, that is,
infxφ(x) = supyψ(y). In terms of a perturbation function p : Rm → R̄ defined as

p(u) = infx f (x, u), (2.1)

it is observed that p(0) = infx f (x, 0) and p∗∗(0) = supyψ(y). Moreover minmax results
in terms of the associated Lagrangian l(x, y) : Rn × Rm → R̄ given by

l(x, y) = infu{ f (x, u)− 〈y, u〉}, (2.2)

exist in literature (for details refer to Theorem 11.50 of Rockafellar and Wets [9]).
The next question that arises is whether the no duality gap relation still holds in the absence

of convexity assumption. Duality gap infxφ(x) > supyψ(y) arises when p is a nonconvex
function. To deal with the situation, when φ is nonconvex, Rockafellar and Wets in their sem-
inal book [9] use augmenting functions to construct augmented Lagrangian functions and
to show that there is no duality gap between the nonconvex primal problem and the corre-
sponding augmented dual problem under certain coercivity assumptions. This method known
as augmented Lagrangian method has been widely and successfully used in the solution of
constrained optimization problems. Assuming the dualizing parameterization function f to
be convex in u they introduced an augmenting function σ : Rm → R̄, that is proper, lsc,
convex function and

min σ(u) = 0 and argmin σ(u) = {0}.
The corresponding augmented Lagrangian with penalty parameter r > 0 is the function
l̄(x, y, r) : Rn × Rm × (0,∞) → R̄ defined by

l̄(x, y, r) = infu{ f (x, u)+ rσ(u)− 〈y, u〉}
and the corresponding dual function ψ̄(y, r) : Rm × (0,∞) → R̄ is given by

ψ̄(y, r) = infx l̄(x, y, r).
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The corresponding augmented Lagrangian dual problem is

(D̄) sup(y,r)∈Rm×(0,∞)ψ̄(y, r).

It is established that the augmented Lagrangian l̄(x, y, r) and the corresponding dual function
ψ̄(y, r) are concave, upper semicontinuous (usc in short) in (y, r) and nondecreasing in r . In a
nonconvex setting with φ(u) as a nonconvex function and the parameterization f (x, u) being
nonconvex in x and convex in u the duality theorem is presented in Theorem 11.59 in [9].
Later Huang and Yang [2] extended the work in [9] by considering a generalized augmenting
function that is not necessarily convex. According to them a function σ : Rm → R̄ is a
generalized augmenting function if it is proper, lsc, level bounded on Rm (see Definition 3.2)
and

min σ(u) = 0 and argmin σ(u) = {0}.
Based on this definition the notions of generalized augmented Lagrangian, generalized aug-
mented Lagrangian dual function and generalized augmented Lagrangian dual problem are
given. Also the dualizing parameterization function is not necessarily taken to be convex in
u. To distinguish the two notions we will refer to the generalized augmented Lagrangian and
the generalized augmented Lagrangian dual function by Huang and Yang [2] as lg(x, y, r)
andψg(y, r), respectively and the generalized augmented Lagrangian dual problem by (Dg).

3 Duality involving indicator augmented Lagrangian

In this section we develop the new augmented Lagrangian approach in terms of indicator
augmenting function.

First assume f : Rn × Rm → R̄ to be any dualizing parameterization function that is
not necessarily convex in u. We consider a function σ(u, r) : Rm+1 → R̄ similar to the
augmenting function considered by Rockafellar and Wets [9]. The function σ(u, .) is not
linear but convex in r and σ(., r) is a convex function. The parameter r acts like a penalty
parameter. In fact we define the function σ(u, r) as the indicator function of closed ball of
radius r in Rm with center at 0. We first recall that for a set A in Rn the indicator function
δA : Rn → R̄ is defined as

δA(x) =
{

0, if x ∈ A
+ ∝, if x /∈ A.

Formally we have the following definition.

Definition 3.1 A function σ : Rm+1 → R̄ is said to be an indicator augmenting function if

σ(u, r) = δrC (u)

where C = {u ∈ Rm |‖u‖ ≤ 1} and ‖u‖ denotes the Euclidean norm.

Observe that even though the minimum value of σ(., r) = 0 for each fixed r , argmin σ is
not a singleton set containing 0 only. Here

minuσ(u, r) = 0 and argminuσ(u, r) = rC,

where for each r > 0 rC = {u ∈ Rm |‖u‖ ≤ r}. Obviouslyσ(., r) being an indicator function
over a compact set it is proper, convex and lsc in u for each fixed r . Clearly, σ(u, r) = δrC (u)
is a convex function of r as for 0 ≤ α ≤ 1
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δ(αr1+(1−α)r2)C (u) ≤ αδr1C (u)+ (1 − α)δr2C (u).

In fact

δmax(r1,r2)C (u) ≤ δ(αr1+(1−α)r2)C (u) ≤ δmin(r1,r2)C (u).

Also

αδrC (u) = δrC (u) for every α > 0.

We define the perturbation function p as in (2.1) and assume that p(0) = inf x f (x, 0) is
finite throughout the sequel.

The indicator augmented Lagrangian is defined as

li (x, y, r) = infu{ f (x, u)+ δrC (u)− 〈y, u〉}
= inf‖u‖≤r { f (x, u)− 〈y, u〉} x ∈ Rn, y ∈ Rm and r > 0.

The function li (x, y, r) is similar to l(x, y) given by (2.2) with the difference that the
infimum is now taken over a closed ball in Rm of radius r with center at 0 instead of the
whole space Rm .

The indicator augmented Lagrangian dual function is

ψ i (y, r) = infx li (x, y, r) y ∈ Rm and r > 0.

The indicator augmented Lagrangian dual problem is

(Di ) sup(y,r)∈Rm×(0,∞)ψ
i (y, r).

Clearly the weak duality holds since for y ∈ Rm and r > 0

ψ i (y, r) = inf x li (x, y, r) = infx infu{ f (x, u)− 〈y, u〉 + δrC (u)}
≤ inf x { f (x, 0)} = p(0).

Before establishing the no zero duality gap condition we first give certain properties of the
generalized augmented Lagrangian and augmented dual function.

Theorem 3.2 For any dualizing parameterization function f and the indicator augmenting
function σ , the indicator augmented Lagrangian li (x, y, r) is concave and usc in y, quasi-
concave, usc and nonincreasing in r . Also it is convex in (x, r) if f is convex in (x, u).
Likewise the indicator augmented Lagrangian dual function ψ i (y, r) is concave and usc in
y and quasiconcave, usc and nonincreasing in r .

Proof Obviously li (x, y, r) is concave and usc in y. For r1 < r2 we have δr1C (u) ≥ δr2C (u)
and hence li (x, y, r1) ≥ li (x, y, r2). Now

li (x, y, αr1 + (1 − α)r2) = infu{ f (x, u)− 〈y, u〉 + δ(αr1+(1−α)r2)C (u)}
= inf‖u‖≤(αr1+(1−α)r2){ f (x, u)− 〈y, u〉}
≥ inf‖u‖≤max(r1,r2){ f (x, u)− 〈y, u〉}.

If r1< r2 we have li (x, y, r1) ≥ li (x, y, r2) and

inf‖u‖≤max(r1,r2){ f (x, u)− 〈y, u〉} = li (x, y, r2)

= min{li (x, y, r1), l
i (x, y, r2)}.

Thus li (x, y, r) is quasiconcave in r . The proof pertaining to the function ψ i (y, r) follows
likewise. �
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As observed previously the function li (x, y, r) is similar to l(x, y) given by (2.2) and in
fact the following theorem gives a relation among them in terms of support function when
the dualizing parameterization function f is convex.

Theorem 3.3 For x in Rn for which φ(x) is finite and f is convex in (x, u) the indicator
augmented Lagrangian is given in terms of the auxiliary Lagrangian l(x, y) by

li (x, y, r) = sup z{l(x, y − z)− ρrC (z)}
and the indicator augmented Lagrangian dual function is given in terms of the dual function
ψ(y) by

ψ i (y, r) = sup z{ψ(y − z)− ρrC (z)}
where ρrC (z) = supu∈rC 〈z, u〉 is the support function of the set rC.

Proof If f is convex in (x, u) it follows that li (x, y, r) is convex in (x, r) as it is defined as
the infimum over u of a convex function f (x, u)+ δrC (u)− 〈y, u〉. Observe that

−li (x, y, r) = supu{〈y, u〉 − f (x, u)− δrC (u)}
is the conjugate of f (x, .)+δrC . By Theorem 11.23(a) of Rockafellar and Wets [9] it follows
that if φ(x) = f (x, 0) is finite then

−li (x, y, r) = supu{〈y, u〉 − f (x, u)} ⊕ supu{〈y, u〉 − δrC (u)}
= infz{supu{〈y − z, u〉 − f (x, u)} + supu{〈z, u〉 − δrC (u)}
= infz{−l(x, y − z)+ supu∈rC 〈z, u〉}.

The proof pertaining to the function ψ i (y, r) follows likewise. �
We require the following notions from [9] to establish no zero duality gap relation.

Definition 3.2 A function f : Rn → R̄ is said to be level-bounded if, for any α ∈ R, the set
{x | f (x) ≤ α} is bounded. A function f (x, u) : Rn × Rm → R̄ is said to be level-bounded
in x locally uniform in u if, for each ū ∈ Rm and α ∈ R, there exists a neighborhood U (ū)
of ū along with a bounded set D in Rn , such that {x | f (x, u) ≤ α} ⊂ D, for any u ∈ U (ū).

We now return to our main concern regarding the equality infx φ(x) = sup(y,r)ψ
i (y, r).

The nonemptyness and compactness of solution set of primal problem (P) along with the exis-
tence of a sequence converging to an optimal solution of (P) is established in the following
theorem under appropriate lsc and level boundedness conditions. Another observation which
forms the main crux in establishing the absence of the duality gap is that for any pair (ȳ, r̄)
withψ i (ȳ, r̄) > −∞, the indicator augmented Lagrangian dual functionψ i (ȳ, r) converges
to the optimal value p(0) of the primal problem as r → 0. One of the advantage of consider-
ing the indicator augmenting function is to establish the relation φ(x) = sup(y,r)l

i (x, y, r),
which in turn helps to establish minmax type relation as in (v) below. In general (as in Huang
and Yang [2]) such a relation does not hold in the absence of convexity assumption on u of
the dualizing parameterization function f .

Theorem 3.4 (Zero duality gap) Consider the primal problem (P), indicator augmented
Lagrangian li (x, y, r) and indicator augmented Lagrangian dual problem (Di ). Assume that
φ is proper, and that its dualizing parameterization function f (x, u) is proper, lsc and level-
bounded in x locally uniform in u. Suppose p(u) = infx f (x, u) and furtherψ i (ȳ, r̄) > −∞
for at least one pair (ȳ, r̄) ∈ Rm × (0,∞). Then
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(i) the solution set of problem (P) is nonempty and compact;
(i i) there exists a sequence (x(rk), u(rk)) ∈ V (ȳ, rk) converging to (x̄ , 0) as k → ∞

corresponding to a sequence {rk} converging to 0 with rk < r̄ such that p(0) = φ(x̄)
where

V (ȳ, r) = {(x, u) ∈ Rn × Rm | f (x, u)− 〈ȳ, u〉 + δrC (u) ≤ φ(x0)}
for any x0 ∈ Rn with φ(x0) being finite;

(i i i) φ(x) = sup(y,r) li (x, y, r), ψ i (y, r) = inf x li (x, y, r). In fact if f (x, u) is convex in

u then φ(x) = supy li (x, y, r) for every r > 0;

(iv) limr→0 ψ
i (ȳ, r) = p(0);

(v) infx φ(x) = infx sup(y,r) li (x, y, r) = sup(y,r) infx li (x, y, r)

= sup(y,r) ψ
i (y, r);

(vi) x̄ ∈ arg minx φ(x) and (ȳ, r̄) ∈ arg max(y,r) ψ i (y, r) if and only if inf x li (x, ȳ, r̄) =
li (x̄, ȳ, r̄) = sup(y,r) li (x̄, y, r).

Proof (i) From the assumption that the dualizing parameterization function f (x, u) is lsc,
and level-bounded in x , we see that φ is lsc and level-bounded. Hence the solution set of (P)
is nonempty and compact.

(i i) Let x0 be a point such that φ(x0) is finite then

V (ȳ, r) = {(x, u) ∈ Rn × Rm | f (x, u)− 〈ȳ, u〉 + δrC (u) ≤ φ(x0)}
= {(x, u) ∈ Rn × rC | f (x, u)− 〈ȳ, u〉 ≤ φ(x0)}.

We claim V (ȳ, r̄) is compact. Clearly V (ȳ, r̄) is closed as f and δrC are lsc. Suppose
V (ȳ, r̄) is not bounded then there exists {(xk, uk)} ∈ V (ȳ, r̄) such that ‖(xk, uk)‖ → ∞
as k → ∞. Since uk ∈ r̄C which is a bounded set it follows that ‖xk‖ → ∞ as k → ∞.
Since (xk, uk) ∈ V (ȳ, r̄) we have

f (xk, uk)− 〈ȳ, uk〉 ≤ φ(x0) for uk ∈ r̄C.

This implies that

f (xk, uk) ≤ φ(x0)+ 〈ȳ, uk〉 ≤ φ(x0)+ t

where t = supu∈r̄C 〈ȳ, u〉. As f (x, u) is level-bounded in x locally uniform in u it
follows that the sequence {xk} is bounded which is a contradiction. Now for r < r̄
we have V (ȳ, r) ⊆ V (ȳ, r̄). Since V (ȳ, r) is closed it is compact for r < r̄ . Clearly,
(x0, 0) ∈ V (ȳ, r) for all r > 0.
Let {rk} be a sequence with rk < r̄ such that rk → 0. Let (x(rk), u(rk)) ∈ V (ȳ, rk) ⊆
V (ȳ, r̄). Since V (ȳ, r̄) is a compact set the sequence has a convergent subsequence.
WLOG assume that the sequence {(x(rk), u(rk)} converges to (x̄, ū). As k → ∞ we
have rkC converges to 0, hence u(rk) → 0 as k → ∞, that is ū = 0. Since φ is lsc and
level bounded there exists a sequence xk such that φ(xk) → p(0) as k → ∞. Hence

φ(x̄) ≤ lim inf k→∞φ(x(rk)) = lim k→∞φ(xk) = p(0).

This implies φ(x̄) = p(0).
(i i i) Since

li (x, y, r) = inf u{ f (x, u)− 〈y, u〉 + δrC (u)}
≤ f (x, 0) = φ(x)
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it follows that

sup(y,r)l
i (x, y, r) ≤ φ(x).

Also we have

sup(y,r)l
i (x, y, r) ≥ li (x, 0, 0) = infu=0{ f (x, u)} = φ(x).

If f (x, u) is convex in u then the function f (x, .) + δrC is lsc and convex in u. Also
since −li (x, y, r) is conjugate of f (x, .)+ δrC it follows that for any r > 0

f (x, u)+ δrC (u) = supy{〈y, u〉 + li (x, y, r)}.
Taking u = 0 we get φ(x) = supy li (x, y, r).

(iv) Since f (x, u) is level-bounded in x locally uniformly in u it follows that p(u) is convex
and lsc on Rm . Now for r > 0

ψ i (ȳ, r) = inf x inf ‖u‖≤r { f (x, u)− 〈ȳ, u〉}
= inf ‖u‖≤r {p(u)− 〈ȳ, u〉}.

From the above relation we get ψ i (ȳ, r) → p(0) as r → 0.

(v) Now

sup(y,r)ψ
i (y, r) ≥ sup rψ

i (ȳ, r) ≥ limr→0ψ
i (ȳ, r) = p(0)

which together with weak duality gives

sup(y,r)ψ
i (y, r) = p(0).

Hence it follows that

inf x sup(y,r)l
i (x, y, r) = sup(y,r) inf x li (x, y, r).

(vi) The result is obvious by (v). �
We now illustrate with an example that the relations φ(x) = sup(y,r) l̄(x, y, r) and

inf x φ(x) = sup(y,r) ψ̄(y, r) do not hold in the case of the augmented Lagrangian con-
sidered by Rockafellar and Wets [9] for a convex augmenting function if f is not convex in
u whereas the corresponding relations hold in the case of indicator augmenting function for
a convex primal problem. However, it may be noted here that the duality relation between
(P) and (D̄) can be obtained by choosing a different augmenting function. The search for an
appropriate augmenting function is another issue that can be avoided in case the indicator
augmenting function is used. Even for the generalized augmented Lagrangian considered by
Huang and Yang [2] the duality fails for the problem considered in this example.

Example 3.5 Consider the problem (P) with φ(x) = x2, f (x, u) = x2 −2u2 and σ(u) = |u|
then l̄(x, y, r) = lg(x, y, r) = −∞ and ψ̄(y) = ψg(y) = −∞. No duality relations can
be established between the primal (P) and the augmented Lagrangian dual problem (D̄) or
generalized augmented Lagrangian dual problem (Dg). The optimal solution of the problem
(P) is x̄ = 0. However, if we consider the generalized augmenting σ(u, r) = δrC (u) then

li (x, y, r) =
{

x2 − 2r2 + yr, if y ≤ 0
x2 − 2r2 − yr, if y > 0.
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and

ψ i (y, r) =
{−2r2 + yr, if y ≤ 0

−2r2 − yr, if y > 0.

Observe that limr→0ψ
i (y, r) = p(0) for any y ∈ R. Here the solution set of the dual problem

(Di ) is empty but the minmax type duality relation

φ(x̄) = inf xφ(x) = inf x sup(y,r)l
i (x, y, r)

= sup(y,r) inf x li (x, y, r) = sup(y,r)ψ
i (y, r);

is obviously true.

The following example justifies the strong duality theorem for primal problem (P) with
nonconvex objective and the indicator augmented Lagrangian dual problem (Di ). In this
example the set of optimal solutions of the dual problem is nonempty and compact.

Example 3.6 Consider the problem (P) with φ : R → R̄ defined as

φ(x) =
{−x, if x ≤ 0

x + 1 if x > 0.

The optimal solution of this problem is x̄ = 0. Consider a dualizing parameterization function
f (x, u) : R × R → R̄ given as

f (x, u) =
{−x, if x ≤ 0

x + 1 + u − u2 if x > 0.

Clearly f (x, 0) = φ(x),∀x ∈ R. For x ∈ R, y ∈ R and r > 0 the function li (x, y, r) is
given by

li (x, y, r) =

⎧⎪⎪⎨
⎪⎪⎩

−x − yr, if x ≤ 0, y ≥ 0
−x + yr, if x ≤ 0, y < 0
x + 1 + r − r2 − yr, if x > 0, y ≥ 1
x + 1 − r − r2 + yr, if x > 0, y < 1.

The generalized augmented Lagrangian dual function ψ i (y, r) is given by

ψ i (y, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−yr, if 0 ≤ y < 1, 2yr + 1 − r − r2 ≥ 0
1 − r − r2 + yr, if 0 ≤ y < 1, 2yr + 1 − r − r2 < 0
−yr, if y ≥ 1, 1 + r − r2 ≥ 0
1 + r − r2 − yr, if y ≥ 1, 1 + r − r2 < 0
yr, if y < 0, 1 − r − r2 ≥ 0
1 − r − r2 + yr, if y < 0, 1 − r − r2 < 0.

Here φ(x̄) = infx φ(x) = sup(y,r) ψ
i (y, r). The perturbation function p(u) is given by

p(u) =
{

0, if 1 + u − u2 ≥ 0
1 + u − u2, if 1 + u − u2 < 0.

It is clear that for all y ∈ Rm and r > 0

ψ i (y, r) ≤ 0 = p(0).

Optimal solution of (Di ) is {(0, r)|1 − r − r2 ≥ 0, r > 0} = {(0, r)|0 < r ≤ (
√

5 − 1)/2}.
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We now give an algorithm for solving the problems (P) and (Di ) in view of
Theorem 3.4(vi).

1. Choose x0, y0 = ȳ, r0 = r̄ , k = 0 and ε > 0 where ψ i (ȳ, r̄) > −∞ and φ(x0) is finite.
2. Solve inf x li (x, yk, rk) and its solution be xk+1 if it exists or else choose xk+1 such that

li (x, yk, rk) ≤ inf x li (x, yk, rk)+ ε.
3. Solve sup(y,r) li (xk, y, r) and its solution be (yk+1, rk+1) if it exists or else choose

(yk+1, rk+1) such that li (xk, yk+1, rk+1) ≥ sup(y,r) li (xk, y, r)− ε.
4. If inf x li (x, yk, rk) ≈ sup(y,r) li (xk, y, r) then xk solves (P) and (yk+1, rk+1) solves (Di )

otherwise set k = k + 1.

We now use this algorithm to solve the problems (P) and (Di ) considered in Example 3.6.
The values of xk, yk and rk at each iteration are tabulated as follows.

k xk yk rk inf x li (x, yk, rk) sup(y,r) li (xk, y, r)
0 3 −2 2 −9 4
1 ε 1

√
ε −√

ε ε + 1
if 1 + √

ε − ε ≥ 0
2 0 1

√
ε −√

ε 0
if 1 + √

ε − ε ≥ 0
3 0 0 r 0 0

r > 0 if 1 − r − r2 ≥ 0 0

Hence we observe that x̄ = 0 solves the problem (P) and

{(0, r)|1 − r − r2 ≥ 0, r > 0} = {(0, r)|0 < r ≤ (
√

5 − 1)/2}
is the solution set of problem (Di ).

4 Exact penalty representation

This section is devoted to the study of exact penalty results in the framework of indicator
augmented Lagrangian. We have he following notion of exact penalty representation in terms
of indicator augmented Lagrangian.

Definition 4.1 (Exact penalty representation) A vector ȳ is said to support an exact penalty
representation for the problem of minimizing φ on Rn if for all r > 0 sufficiently small this
problem is equivalent to minimizing li (., ȳ, r) on Rn in the sense that

inf xφ(x) = inf x li (x, ȳ, r)

arg min xφ(x) = arg min x li (x, ȳ, r).

A value r̄ is said to serve as an adequate penalty threshold if the property holds for all
r ∈ ]0, r̄ ].

For the problem considered in Example 3.6 it can be seen that ȳ = 0 supports an exact
penalty representation. Since for ȳ = 0

li (x, ȳ, r) =
{−x, if x ≤ 0,

x + 1 − r − r2, if x > 0.
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it is apparent that if 1 − r − r2 ≥ 0 then

infx φ(x) = inf x li (x, ȳ, r)

arg minx φ(x) = arg minx li (x, ȳ, r).

Here r̄ = (
√

5 − 1)/2 serves as an adequate penalty threshold.
The following theorem refines Theorem 11.61 of Rockafellar and Wets [9] and Theo-

rem 3.1 of Huang and Yang [2]. No extra condition as in Theorem 3.1 of [2] is required to
establish the equivalence.

Theorem 4.2 (Criterion for exact penalties) In the notation and assumptions of strong duality
the following assertions are equivalent:

(i) A vector ȳ supports an exact penalty representation for the primal problem (P);
(i i) There exists an r̄ > 0 with (ȳ, r̄) ∈ arg max(y,r) ψ i (y, r);
(i i i) There exists r̂ > 0 such that for any r ∈ ]0, r̂ ]

p(u) ≥ p(0)+ 〈ȳ, u〉 − δrC (u) ∀u ∈ Rm;
(iv) There exists a neighborhood U of 0 such that

p(u) ≥ p(0)+ 〈ȳ, u〉 ∀u ∈ U.

The values of r̄ and r̂ are the ones serving as adequate penalty threshold with respect to ȳ.

Proof

(i) ⇒ (i i) We first assert that if ȳ supports an exact penalty representation for the
primal problem (P) with adequate penalty threshold r̄ then (ȳ, r̄) max-
imizes ψ i (y, r). Since ȳ supports an exact penalty representation we
have inf x φ(x) = infx li (x, ȳ, r) = ψ i (ȳ, r) for all r ∈ ]0, r̄ ]. Hence
it follows that ψ i (ȳ, r̄) ≥ limsupr→0ψ

i (ȳ, r) ≥ infx φ(x), as ψ i is
usc in r . By Theorem 3.4 we have infx φ(x) = sup(y,r) ψ

i (y, r), hence
ψ i (ȳ, r̄) = sup(y,r) ψ

i (y, r).
(i i) ⇒ (i i i) Assume that ψ i (ȳ, r̄)= sup(y,r) ψ

i (y, r). As sup(y,r) ψ
i (y, r)= infx

φ(x)= p(0) it follows that infx li (x, ȳ, r̄) ≥ p(0). Using the defini-
tion of li (x, ȳ, r̄) we have infx infu{ f (x, u)− 〈ȳ, u〉 + δr̄C (u)} ≥ p(0)
which implies

infu{p(u)− 〈ȳ, u〉 + δr̄C (u)} ≥ p(0)

that is

p(u) ≥ p(0)+ 〈ȳ, u〉 − δr̄C (u) ∀u ∈ Rm .

For any r ∈ ]0, r̄ ] it is obvious that

p(u) ≥ p(0)+ 〈ȳ, u〉 − δrC (u) ∀u ∈ Rm .

(i i i) ⇒ (i) Clearly for any r ∈ ]0, r̂ ], 0 ∈ arg minu{p(u) − 〈ȳ, u〉 + δrC (u)}. For
a fixed r < r̂ , if we consider g(x, u) = f (x, u) − 〈ȳ, u〉 + δrC (u)
and h(u) = inf x g(x, u) and k(x) = infu g(x, u) then h(u) = p(u) −
〈ȳ, u〉 + δrC (u) and k(x) = li (x, ȳ, r). According to the Rule 1.35 in [9]
we have ū ∈ arg minu h(u) and x̄ ∈ arg minx g(x, ū) if and only if x̄ ∈
arg minx k(x) and ū ∈ arg minx g(x̄, u). Since ū = 0 ∈ arg minu h(u) the
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pair (x̄, ū) with x̄ ∈ arg minx g(x, ū) = arg minx φ(x) also satisfy x̄ ∈
arg minx li (x, ȳ, r) and ū = 0 ∈ arg minx g(x̄, u). Thus arg minx φ(x) =
arg minx li (x, ȳ, r). Also we have inf x φ(x) = p(0) = infu h(u) =
infu infx g(x, u) = inf x infu g(x, u) = infx li (x, ȳ, r). Thus ȳ supports
an exact penalty representation for the primal problem (P) with adequate
penalty threshold r̂ .

(i i i) ⇒ (iv) Choosing U = r̂C it follows that

p(u) ≥ p(0)+ 〈ȳ, u〉 ∀u ∈ U.

(iv) ⇒ (i i i) Choose any r̂ > 0 such that r̂C ⊆ U . Then for any r ∈] 0, r̂ ]
p(u) ≥ p(0)+ 〈ȳ, u〉 − δrC (u) ∀u ∈ Rm .

�
Referring back to the problem considered in Example 3.6 it is observed that for ȳ = 0

which supports an exact penalty representation

ψ i (ȳ, r) =
{

0, if 1 − r − r2 ≥ 0
1 − r − r2, if 1 − r − r2 < 0,

=
{

0, if 0 < r ≤ (
√

5 − 1)/2,
1 − r − r2, if r > (

√
5 − 1)/2.

Now (ȳ, r̄) ∈ arg max(y,r) ψ i (y, r) with ȳ = 0 and any r̄ with 0 < r̄ ≤ (
√

5 − 1)/2. Also
for r ∈] 0, r̂ ] with r̂ = (

√
5 − 1)/2 we have

p(u) ≥ p(0)+ 〈ȳ, u〉 − δrC (u) ∀u ∈ Rm .

The neighborhood U = [−(√5 − 1)/2, (
√

5 − 1)/2] of 0 with ȳ = 0 satisfies

p(u) ≥ p(0)+ 〈ȳ, u〉 ∀u ∈ U.

5 Conclusions

The indicator augmenting Lagrangian approach to duality and exact penalization is applicable
in the case of any nonconvex optimization problem. The idea here is to define the negative of
augmented Lagrangian in terms of the conjugate of the dualizing parameterization function
on a restricted domain namely a closed ball with center at origin of certain radius. The radius
of the closed ball acts like a penalty parameter and contracting the ball to the origin leads
to the reduction of the duality gap to zero. It would be worthwhile to investigate on stability
conditions that could lead to the existence of optimal solution(s) of the dual problem.
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